by the American Chemical Society, for partial support of this work.

Registry No. 1a, 64317-99-3; 1b, 64318-00-9; 3, 81121-00-8; 4, 81121-01-9; $5(\mathrm{M}=\mathrm{Mo}), 81121-03-1 ; 5(\mathrm{M}=\mathrm{W}), 81121-05-3 ; 6(\mathrm{M}$ $=\mathrm{Mo}), 81120-90-3 ; 6(\mathrm{M}=\mathrm{W}), 81120-91-4 ;\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{3} \mathrm{Cl}$, 12128-23-3

Supplementary Material Available: Listings of atomic positions, thermal parameters, bond lengths, and bond angles (2 pages). Ordering information is given on any current masthead page.

Dithiaethylene Radical Cations and Anions ${ }^{1}$

Glen A. Russell* and Mary Zaleta
Department of Chemistry, Iowa State University Ames, Iowa 50011
Received November 6, 1981

Hyperfine splittings (hfs) by hydrogen atoms α to a sulfur atom with unpaired spin density in the ESR spectra of tetrathiaethylene $\left((\mathrm{RS})_{2} \mathrm{C}=\mathrm{C}(\mathrm{SR})_{2}\right)$ radical cations have been interpreted ${ }^{2,3}$ as arising mainly or solely from an angle-independent spin polarization ($\left.\left|a_{\alpha}{ }^{H}\right|=17 \rho_{\mathrm{S}} \mathrm{G}\right),{ }^{3}$ in contrast to the hyperconjugation mechanism that dominates for carbon-centered radicals. ${ }^{4}$ We have tested this interpretation by comparing systems with one and two sulfur atoms with unpaired electron spin density attached to a carbon atom bearing a proton, e.g., 1 and 2. A spin polarization

$$
a^{\mathrm{H}}=5.65(6 \mathrm{H}), 3.50(4 \mathrm{H}) \mathrm{G} \quad a^{\mathrm{H}}=24.2(1 \mathrm{H}), 8.5(4 \mathrm{H}) \mathrm{G}
$$

mechanism with $Q \cdot{ }_{\text {scH }}{ }^{\mathrm{H}}=17$ requires $\rho_{\mathrm{S}}(\mathbf{1})=0.27$ and $\rho_{\mathrm{S}}(\mathbf{2})$ to have the impossible value of $0.71\left(\rho_{\mathrm{S}}(2)=24.2 / 2(17)\right)$. The high value of $a_{\alpha}{ }^{H}$ for the methine hydrogen of 2 requires a delocalization mechanism. The unpaired electron in the π system is in a symmetric SOMO, which leads to the hyperconjugation predictions; ${ }^{5} a_{\alpha}{ }^{H}(1)=B\left(c_{\mathrm{S}}\right)^{2}\left\langle\cos ^{2} \theta(1)\right\rangle$ and $a_{\alpha}{ }^{H}(2)=B$ $\left(2 c_{\mathrm{s}}\right)^{2}\left\langle\cos ^{2} \theta(2)\right\rangle$, where c_{S} is the MO coefficient for the S atom in the SOMO and θ s are the dihedral angles between the $\mathrm{C}-\mathrm{H}$ bonds and the sulfur p orbitals with unpaired electron spin. Utilizing the value of B for $\mathrm{CH}_{3} \mathrm{SO}$ of $25.4 \mathrm{G}^{4 \mathrm{c}}$ and $a_{\mathrm{CCH}_{3}}{ }^{\mathrm{H}}=27 \rho_{\mathrm{C}}$ leads to $\rho_{\mathrm{S}}=c_{\mathrm{S}}{ }^{2}=0.29,\left\langle\cos ^{2} \theta(1)\right\rangle=0.5,\left\langle\cos ^{2} \theta(2)\right\rangle=0.8$. A spin polarization mechanism even with a dihedral angle dependence ($a_{\alpha}{ }^{\mathrm{H}}=n B^{\prime} \rho_{\mathrm{S}}\left\langle\cos ^{2} \theta\right\rangle ; n=1$ or 2) cannot yield reasonable values of $\left\langle\cos ^{2} \theta\right\rangle$.

Delocalization also explains a puzzling effect of ring size on $a_{\alpha}{ }^{H}$ for the radical cations 3 and 4 when compared with the semidiones 5 and 6. In 3 and 4 the unpaired electron is in an antisymmetric MO ($\left.c_{\mathrm{S}(j)}=-c_{\mathrm{S}(j)}\right)$, whereas the semidiones possess a symmetric SOMO. The value of $a_{\alpha}{ }^{H}$ will be determined by the hyperconjugative 1,2 interactions and the homohyperconjugative (W plan) 1,3 interactions ${ }^{8}$ and will qualitatively be a function of $\left(c_{i} \cos \theta_{i}+\lambda c_{j} \cos \theta_{j}\right)^{2}$, where i and j are atoms with π-electron spin density α and β to the $\mathrm{C}-\mathrm{H}$ bond. In the semidiones the symmetric SOMO leads to a reinforcement of the interactions,

[^0]

$$
4,{ }^{6} \mathrm{Y}-\mathrm{Y}=\mathrm{S}^{\cdot+} \mathrm{S}
$$
$$
a^{\mathrm{H}}=3.7 \mathrm{G} ; g=2.0193
$$
$$
a^{\mathrm{H}}=10.0 \mathrm{G} ; g=2.0182
$$
$$
5,{ }^{7} \mathrm{Y}-\mathrm{Y}=\operatorname{lich}_{\substack{c / /}}^{\text {cmm }}
$$
$$
a^{\mathrm{H}}=13.85 \mathrm{G} ; g=2.0051
$$
$$
6,{ }^{7} \mathrm{Y}-\mathrm{Y}=\stackrel{9}{\cdot-0}
$$
$$
a^{\mathrm{H}}=12.93 \mathrm{G} ; g=2.0051
$$
whereas in the 1,2 -dithia radical cations the two effects are opposed. ${ }^{\text {. }}$ Apparently 3 possesses a superior geometric arrangement for the 1,3 interaction in $7 \rightleftharpoons 8$.

In a related study we have investigated the effect on spin delocalization by replacing semidione oxygen atoms with sulfur atoms ($9 \rightarrow \mathbf{1 0} \rightarrow \mathbf{1 1}$). Consistent results were obtained with

$\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3},-\left(\mathrm{CH}_{2}\right)_{4}$, or cis-1,3-cyclopentadiyl and $\mathrm{R}_{1}=$ $\mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{R}_{2}=\mathrm{CH}_{3}$. Replacement of oxygen by sulfur lowers $\rho_{\mathrm{C}=\mathrm{x}} \mathrm{C}$ by approximately 50% as illustrated by the hfs constants for 12-14

(a^{H} in G in $\mathrm{Me}_{2} \mathrm{SO}$). The spin distribution in 11 favors structure \mathbf{a} over $\mathbf{b}=\mathbf{c}$ when X is changed from O to S , presumably because the π-bond energy of $\mathrm{C}=\mathrm{S}$ is lower than $\mathrm{C}=\mathrm{O}$. In $10, \rho_{\mathrm{C}=\mathrm{S}} \mathrm{C}$ $>\rho_{\mathrm{C}}={ }^{\mathrm{C}}$ for the same reason, i.e., structure \mathbf{b} is preferred to \mathbf{c}.
Radical cations 1-4 were observed upon treatment of $2,3-\mathrm{di}$ -hydro-5,6-dimethyl-1,4-dithiin (1), 2-methyl-4,5-tetra-methylene-1,3-dithiole (2), 1,2-ethanedithiol or poly(dithio-1,2ethanediyl) (3), and 1,3-propanedithiol or 1,2-dithiolane (4) with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $25^{\circ} \mathrm{C}$. The radical cation 3 was initially observed but upon standing the ESR signal was dominated by the $\Delta^{2,2^{2}}$-bi-1,3-dithiolane radical cation. ${ }^{2,3}$ Thiosemidiones were formed by the treatment of the 2-mercapto ketones or generated in situ enedithiols with KOCMe_{3} in $\mathrm{Me}_{2} \mathrm{SO}$ at $25^{\circ} \mathrm{C}$.

Registry No. 1, 81195-29-1; 2, 81195-30-4; 3, 81195-31-5; 4, 66609. 63-0; 13, 81195-32-6; 14, 81195-33-7.
(9) For previous applications see: G. A.; Holland, G. W.; Chang, K.-Y.; Keske, R. G.; Mattox, J.; Chung, C. S. C.; Stanley, K.; Schmitt, K.; Blankespoor, R.; Kosugi, Y. J. Am. Chem. Soc. 1974, 96, 7237. Bauld, N. L.; Farr, F. R. Ibid. 1974, 96, 5633. Bauld, N. L.; Farr, F. R.; Hudson, C. E. Ibid. 1974, 96, 5634.

[^0]: (1) Applications of ESR Spectroscopy to Problems of Structure and Conformation. 34. This work was supported by Grant CHE-7823866 from the National Science Foundation.
 (2) Chambers, J. Q.; Canfield, N. D.; Williams, D. R.; Coffen, C. L. Mol. Phys. 1970, 19, 581.
 (3) Bock, H.; Brähler, G.; Henkel, U.; Schleeker, R.; Seebach, D. Chem. Ber. 1980, 1/3, 289.
 (4) Other workers had presumed an angle dependence for $a_{\mathrm{SCH}} \mathrm{H}$; (a) Forbes, W. F.; Sullivan, P. D. J. Can. Chem. 1968, 46, 317. (b) Geske, D. H.; Merritt, M. V. J. Am. Chem. Soc. 1969, 91, 6921. (c) Nishikida, K.; Williams, F. J. Am. Chem. Soc. 1974, 96, 4781.
 (5) Whiffen, D. H. Mol. Phys. 1963, 6, 223.
 (6) Previously prepared in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: Bock, H.; Stein, U. Angew. Chem. 1979, 92, 864.
 (7) Russell, G. A.; Osuch, C. E. J. Am. Chem. Soc. 1978, 100, 5979.
 (8) Russell, G. A.; Chang, K.-Y. J. Am. Chem. Soc. 1965, 87, 4381.

